Exercise 53

Use the definition of a derivative to find $f^{\prime}(x)$ and $f^{\prime \prime}(x)$. Then graph f, f^{\prime}, and $f^{\prime \prime}$ on a common screen and check to see if your answers are reasonable.

$$
f(x)=3 x^{2}+2 x+1
$$

Solution

Use the definition of the derivative to find f^{\prime}.

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left[3(x+h)^{2}+2(x+h)+1\right]-\left[3 x^{2}+2 x+1\right]}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left[3\left(x^{2}+2 x h+h^{2}\right)+2 x+2 h+1\right]-3 x^{2}-2 x-1}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left(3 x^{2}+6 x h+3 h^{2}+2 x+2 h+1\right)-3 x^{2}-2 x-1}{h} \\
& =\lim _{h \rightarrow 0} \frac{6 x h+3 h^{2}+2 h}{h} \\
& =\lim _{h \rightarrow 0}(6 x+3 h+2) \\
& =6 x+2
\end{aligned}
$$

Use the definition of the derivative again to find $f^{\prime \prime}$.

$$
\begin{aligned}
f^{\prime \prime}(x) & =\lim _{h \rightarrow 0} \frac{f^{\prime}(x+h)-f^{\prime}(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{[6(x+h)+2]-[6 x+2]}{h} \\
& =\lim _{h \rightarrow 0} \frac{(6 x+6 h+2)-6 x-2}{h} \\
& =\lim _{h \rightarrow 0} \frac{6 h}{h} \\
& =\lim _{h \rightarrow 0} 6 \\
& =6
\end{aligned}
$$

Below is a graph of $f(x), f^{\prime}(x)$, and $f^{\prime \prime}(x)$ versus x.

Notice that the red curve is negative where the blue curve is decreasing and positive where the blue curve is increasing. Since the red curve is increasing at a constant rate, the green curve is just a constant.

